Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.263
Filtrar
1.
Eur Heart J ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38626306

RESUMEN

BACKGROUND AND AIMS: Emerging evidence has raised an obesity paradox in observational studies of body mass index (BMI) and health among the oldest-old (aged ≥80 years), as an inverse relationship of BMI with mortality was reported. This study was to investigate the causal associations of BMI, waist circumference (WC), or both with mortality in the oldest-old people in China. METHODS: A total of 5306 community-based oldest-old (mean age 90.6 years) were enrolled in the Chinese Longitudinal Healthy Longevity Survey (CLHLS) between 1998 and 2018. Genetic risk scores were constructed from 58 single-nucleotide polymorphisms (SNPs) associated with BMI and 49 SNPs associated with WC to subsequently derive causal estimates for Mendelian randomization (MR) models. One-sample linear MR along with non-linear MR analyses were performed to explore the associations of genetically predicted BMI, WC, and their joint effect with all-cause mortality, cardiovascular disease (CVD) mortality, and non-CVD mortality. RESULTS: During 24 337 person-years of follow-up, 3766 deaths were documented. In observational analyses, higher BMI and WC were both associated with decreased mortality risk [hazard ratio (HR) 0.963, 95% confidence interval (CI) 0.955-0.971 for a 1-kg/m2 increment of BMI and HR 0.971 (95% CI 0.950-0.993) for each 5 cm increase of WC]. Linear MR models indicated that each 1 kg/m2 increase in genetically predicted BMI was monotonically associated with a 4.5% decrease in all-cause mortality risk [HR 0.955 (95% CI 0.928-0.983)]. Non-linear curves showed the lowest mortality risk at the BMI of around 28.0 kg/m2, suggesting that optimal BMI for the oldest-old may be around overweight or mild obesity. Positive monotonic causal associations were observed between WC and all-cause mortality [HR 1.108 (95% CI 1.036-1.185) per 5 cm increase], CVD mortality [HR 1.193 (95% CI 1.064-1.337)], and non-CVD mortality [HR 1.110 (95% CI 1.016-1.212)]. The joint effect analyses indicated that the lowest risk was observed among those with higher BMI and lower WC. CONCLUSIONS: Among the oldest-old, opposite causal associations of BMI and WC with mortality were observed, and a body figure with higher BMI and lower WC could substantially decrease the mortality risk. Guidelines for the weight management should be cautiously designed and implemented among the oldest-old people, considering distinct roles of BMI and WC.

2.
Spine J ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608821

RESUMEN

BACKGROUND CONTEXT: Intervertebral disc degeneration is common and may play an important role in low back pain, but it is not well-understood. Previous studies have shown that the outer layer of the annulus fibrosus of a healthy disc is innervated by nociceptive nerve fibers. In the process of disc degeneration, it can grow into the inner annulus fibrosus or nucleus pulposus and release neuropeptides. Disc degeneration is associated with inflammation that produces inflammatory factors and potentiates nociceptor sensitization. Subsequently neurogenic inflammation is induced by neuropeptide release from activated primary afferent terminals. Because the innervation of a lumbar disc comes from multi-segmental dorsal root ganglion neurons, does neurogenic inflammation in a degenerative disc initiate neurogenic inflammation in neighboring healthy discs by antidromic activity? PURPOSE: This study was based on animal experiments in Sprague-Dawley rats to investigate the role of neurogenic inflammation in adjacent healthy disc degeneration induced by disc injury. STUDY DESIGN: This was an experimental study. METHODS: Seventy-five 12-week-old, male Sprague-Dawley rats were allocated to 3 groups (sham group, disc injury group and disc injury+TrkA antagonist group). The disc injury group was punctured in the tail disc between the eighth and ninth coccygeal vertebrae (Co8-9) to establish an animal model of tail intervertebral disc degeneration. The sham group underwent only skin puncture and the disc injury+TrkA antagonist group was intraperitoneally injected with GW441756 two days before disc puncture. The outcome measure included quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS: Disc injury induced an increase in aggrecan, NGF, TrkA, CGRP, SP, IL-1ß, and IL-6 mRNA levels in the injured (Co8-9) and adjacent discs (Co7-8), which reached a peak on day 1, then gradually decreased, and returned to normal on day 14. After intraperitoneal injection of GW441756 prior to puncture, the mRNA levels of the above indicators were down-regulated in Co7-8 and Co8-9 intervertebral discs on the 1st and 7th days. The protein content of the above indicators in Co7-8 and Co8-9 intervertebral discs showed roughly the same trend as mRNA levels. CONCLUSIONS: Degeneration of one disc can induce neurogenic inflammation of adjacent healthy discs in a rat model. CLINICAL SIGNIFICANCE: This model supports a key role of neurogenic inflammation in disc degeneration, and may play a role in the experience of low back pain.

3.
Front Plant Sci ; 15: 1257882, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567136

RESUMEN

Introduction: An appropriate supply of ammonium (NH4+) in addition to nitrate (NO3-) can greatly improve plant growth and promote maize productivity. However, knowledge gaps exist regarding the mechanisms by which different nitrogen (N) fertilizer sources affect the enzymatic activity of nitrogen metabolism and non-structural carbohydrates during the post-anthesis period. Methods: A field experiment across 3-year was carried out to explore the effects of four nitrateammonium ratio (NO3-/NH4+ = 1:0 (N1), 1:1 (N2), 1:3 (N3), and 3:1 (N4)) on postanthesis dry matter (DM) and N accumulation, partitioning, transportation, and grain yield in maize. Results: NO3-/NH4+ ratio with 3:1 improved the enzymatic activity of N metabolism and non-structural carbohydrate accumulation, which strongly promoted the transfer of DM and N in vegetative organs to reproductive organs and improved the pre-anthesis DM and nitrogen translocation efficiency. The enzymatic activities of nitrate reductase, nitrite reductase, glutamine synthetase, glutamine oxoglutarate aminotransferase, and non-structural carbohydrate accumulation under N4 treatment were increased by 9.30%-32.82%, 13.19%-37.94%, 4.11%-16.00%, 11.19%-30.82%, and 14.89%-31.71% compared with the other treatments. Mixed NO3--N and NH4+-N increased the total DM accumulation at the anthesis and maturity stages, simultaneously decreasing the DM partitioning of stem, increasing total DM, DM translocation efficiency (DMtE), and contribution of pre-anthesis assimilates to the grain (CAPG) in 2015 and 2017, promoting the transfer of DM from stem to grain. Furthermore, the grain yield increased by 3.31%-9.94% (2015), 68.6%-26.30% (2016), and 8.292%-36.08% (2017) under the N4 treatment compared to the N1, N2, and N3 treatments. Conclusion: The study showed that a NO3-/NH4+ ratio of 3:1 is recommended for high-yield and sustainable maize management strategies in Northwestern China.

4.
Adv Sci (Weinh) ; : e2308955, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647404

RESUMEN

The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low-cost fabrication process to achieve high-quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si0.25Ge0.75H, Si0.50Ge0.50H, and Si0.75Ge0.25H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect-rich loose-layered structures. Among these compositions, the Si0.50Ge0.50H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g-1 after 60 cycles at a current density of 75 mA g-1. A comprehensive ex-situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si0.50Ge0.50H. Subsequently, an initial assessment of the c-Li15(SixGe1- x)4 phase after lithiation and the a-Si0.50Ge0.50 phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane-silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium.

5.
BMC Ophthalmol ; 24(1): 171, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627705

RESUMEN

BACKGROUND: To explore the safety of Neodymium:Yttrium-aluminum-garnet (Nd:YAG) laser vitreolysis based on the histological examination of the retina and the alteration of vitreous cytokines in the rabbits. METHODS: Nine male New Zealand rabbits underwent Nd:YAG laser vitreolysis of 10 mJ x 500 pulses in the left eyes, while the right eyes were used as controls. Intraocular pressure, color fundus photography, and ultrasound B scan were measured before, as well as 1 day, 4 weeks, and 12 weeks after Nd:YAG laser vitreolysis. Three rabbits were euthanized 1 day, 4 weeks, and 12 weeks after treatment, respectively. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and hematoxylin-eosin (H&E) staining were used to look for pathological changes in the retina. An enzyme-linked immunosorbent assay (ELISA) was utilized to detect the expression of vascular endothelial growth factor (VEGF) and some inflammatory cytokines, including interferon inducible protein 10 (IP-10), monocyte chemoattractant protein 1 (MCP-1) and interlenkin 6 (IL-6) in the vitreous humor. The ascorbic acid (AsA) and total reactive antioxidant potential (TRAP) in the vitreous humor were also measured. RESULTS: Following Nd:YAG laser vitreolysis, the levels of VEGF, IP-10, MCP-1, IL6, AsA, and TRAP in the vitreous humor did not change substantially (P > 0.05). There were no detectable pathological changes in the retinal tissues, and no apoptotic signal was found. CONCLUSIONS: Rabbits tolerate Nd:YAG laser vitreolysis without observable impact on retinal tissue or the microenvironment of the vitreous.


Asunto(s)
Oftalmopatías , Terapia por Láser , Láseres de Estado Sólido , Masculino , Conejos , Animales , Factor A de Crecimiento Endotelial Vascular , Láseres de Estado Sólido/efectos adversos , Quimiocina CXCL10 , Cuerpo Vítreo/cirugía , Oftalmopatías/etiología , Retina , Antioxidantes , Ácido Ascórbico , Terapia por Láser/efectos adversos
6.
Sci Rep ; 14(1): 8224, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589625

RESUMEN

Herein, a practical ultra-high-performance concrete (UHPC) was created by adding two different shapes of steel fibers and curing them at ambient temperature using palygorskite-nanofiber (PN) as the modifier. The compressive strength, flexural strength, water absorption capacity, and porosity were analyzed to determine the effects of the steel fibers and PNs on the UHPC mechanical and physical properties. The steel fibers and PNs were found to improve these properties. The UHPC mechanical properties were outstanding at 1.5% fiber dosage, while physical properties were excellent at 1.0% fiber dosage. The mechanical and physical characteristics of UHPC were preferably at a PN dosage of 0.2% and the fiber dosage of 1.0%. The compressive and flexural strengths of straight-steel-fiber UHPC were 145.57 and 19.67 MPa, respectively, i.e., 42.0 and 109.4% higher than those of the reference specimens (i.e., those without fibers or PNs); the water absorption capacity and porosity decreased by 50.1 and 60.7%, respectively. The compressive and flexural strengths of hooked-end-steel-fiber UHPC were 18.3 and 96.0% higher than those of the reference specimens, respectively, and the water absorption capacity and porosity decreased by 43.2 and 29.8%, respectively. These results could provide vital information for the promotion and practical application of UHPC.

7.
J Hepatol ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38604387

RESUMEN

BACKGROUND AND AIMS: In individuals highly exposed to hepatitis C virus (HCV), reinfection is common, suggesting that natural development of sterilising immunity is difficult. In those that are reinfected, some will develop a persistent infection, while a small proportion repeatedly clear the virus, suggesting natural protection is possible. The aim of this study was to characterise immune responses associated with rapid natural clearance of HCV reinfection. METHODS: Broad neutralising antibodies (BnAbs) and Envelope 2 (E2)-specific memory B cell (MBCs) responses were examined longitudinally in 15 subjects with varied reinfection outcomes. RESULTS: BnAb responses were associated with MBC recall, but not with reinfection clearance. Strong evidence of antigen imprinting was found, and the B cell receptor repertoire showed a high level of clonality with ongoing somatic hypermutation of many clones over subsequent reinfection events. Single cell transcriptomic analyses showed that cleared reinfections featured an activated transcriptomic profile in HCV-specific B cells that rapidly expanded upon reinfection. CONCLUSIONS: MBC quality, but not necessarily breadth of nAb responses, is important for protection against antigenically diverse variants, which is encouraging for HCV vaccine development.

8.
Sci Adv ; 10(16): eadk2350, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640239

RESUMEN

Nanoparticle organic hybrid materials (NOHMs) have been proposed as excellent electrolytes for combined CO2 capture and electrochemical conversion due to their conductive nature and chemical tunability. However, CO2 capture behavior and transport properties of these electrolytes after CO2 capture have not yet been studied. Here, we use a variety of nuclear magnetic resonance (NMR) techniques to explore the carbon speciation and transport properties of branched polyethylenimine (PEI) and PEI-grafted silica nanoparticles (denoted as NOHM-I-PEI) after CO2 capture. Quantitative 13C NMR spectra collected at variable temperatures reveal that absorbed CO2 exists as carbamates (RHNCOO- or RR'NCOO-) and carbonate/bicarbonate (CO32-/HCO3-). The transport properties of PEI and NOHM-I-PEI studied using 1H pulsed-field-gradient NMR, combined with molecular dynamics simulations, demonstrate that coulombic interactions between negatively and positively charged chains dominate in PEI, while the self-diffusion in NOHM-I-PEI is dominated by silica nanoparticles. These results provide strategies for selecting adsorbed forms of carbon for electrochemical reduction.

9.
Insights Imaging ; 15(1): 70, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472526

RESUMEN

OBJECTIVES: To achieve automated quantification of visceral adipose tissue (VAT) distribution in CT images and screen out parameters with discriminative value for inflammatory bowel disease (IBD) subtypes. METHODS: This retrospective multicenter study included Crohn's disease (CD) and ulcerative colitis (UC) patients from three institutions between 2012 and 2021, with patients with acute appendicitis as controls. An automatic VAT segmentation algorithm was developed using abdominal CT scans. The VAT volume, as well as the coefficient of variation (CV) of areas within the lumbar region, was calculated. Binary logistic regression and receiver operating characteristic analysis was performed to evaluate the potential of indicators to distinguish between IBD subtypes. RESULTS: The study included 772 patients (365 CDs, median age [inter-quartile range] = 31.0. (25.0, 42.0) years, 255 males; 241 UCs, 46.0 (34.0, 55.5) years, 138 males; 166 controls, 40.0 (29.0, 53.0) years, 80 males). CD patients had lower VAT volume (CD = 1584.95 ± 1128.31 cm3, UC = 1855.30 ± 1326.12 cm3, controls = 2470.91 ± 1646.42 cm3) but a higher CV (CD = 29.42 ± 15.54 %, p = 0.006 and p ˂ 0.001) compared to UC and controls (25.69 ± 12.61 % vs. 23.42 ± 15.62 %, p = 0.11). Multivariate analysis showed CV was a significant predictor for CD (odds ratio = 6.05 (1.17, 31.12), p = 0.03). The inclusion of CV improved diagnostic efficiency (AUC = 0.811 (0.774, 0.844) vs. 0.803 (0.766, 0.836), p = 0.08). CONCLUSION: CT-based VAT distribution can serve as a potential biomarker for distinguishing IBD subtypes. CRITICAL RELEVANCE STATEMENT: Visceral fat distribution features extracted from CT images using an automated segmentation algorithm (1.14 min) show differences between Crohn's disease and ulcerative colitis and are promising for practical radiological screening. KEY POINTS: • Radiological parameters reflecting visceral fat distribution were extracted for the discrimination of Crohn's disease (CD) and ulcerative colitis (UC). • In CD, visceral fat was concentrated in the lower lumbar vertebrae, and the coefficient of variation was a significant predictor (OR = 6.05 (1.17, 31.12), p = 0.03). • The differences between CD, UC, and controls are promising for practical radiological screening.

10.
Nat Commun ; 15(1): 2327, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485966

RESUMEN

Polymerization-driven removal of pollutants in advanced oxidation processes (AOPs) offers a sustainable way for the simultaneous achievement of contamination abatement and resource recovery, supporting a low-carbon water purification approach. However, regulating such a process remains a great challenge due to the insufficient microscopic understanding of electronic structure-dependent reaction mechanisms. Herein, this work probes the origin of catalytic pollutant polymerization using a series of transition metal (Cu, Ni, Co, and Fe) single-atom catalysts and identifies the d-band center of active site as the key driver for polymerization transfer of pollutants. The high-valent metal-oxo species, produced via peroxymonosulfate activation, are found to trigger the pollutant removal via polymerization transfer. Phenoxyl radicals, identified by the innovative spin-trapping and quenching approaches, act as the key intermediate in the polymerization reactions. More importantly, the oxidation capacity of high-valent metal-oxo species can be facilely tuned by regulating their binding strength for peroxymonosulfate through d-band center modulation. A 100% polymerization transfer ratio is achieved by lowering the d-band center. This work presents a paradigm to dynamically modulate the electronic structure of high-valent metal-oxo species and optimize pollutant removal from wastewater via polymerization.

11.
Ecotoxicol Environ Saf ; 274: 116218, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492481

RESUMEN

Cyfluthrin (Cy) is a widely used pyrethroid insecticide. There is growing evidence that Cy can cause damage to the nervous, reproductive, and immune systems, but there is limited evidence on the potential effects of maternal Cy exposure on offspring. A model of maternal Cy exposure was used to assess its neurobehavioral effects on young-adult offspring. We found that gestational Cy exposure affected pregnancy outcomes and fetal development, and that offspring showed impairments in anxiety as well as learning and memory, accompanied by impairments in hippocampal synaptic ultrastructure and synaptic plasticity. In addition, the IP3R-GRP75-VDAC1 apoptogenic pathway was also upregulated, and in vitro models showed that inhibition of this pathway alleviated neuronal apoptosis as well as synaptic plasticity damage. In conclusion, maternal Cy exposure during pregnancy can cause neurobehavioral abnormalities and synaptic damage in offspring, which may be related to neuronal apoptosis induced by activation of the IP3R-GRP75-VDAC1 pathway in the hippocampus of offspring. Our findings provide clues to understand the neurotoxicity mechanism of maternal Cy exposure to offspring during pregnancy.


Asunto(s)
Proteínas de la Membrana , Nitrilos , Piretrinas , Femenino , Humanos , Embarazo , Hipocampo/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Nitrilos/toxicidad , Piretrinas/toxicidad , Canal Aniónico 1 Dependiente del Voltaje/efectos de los fármacos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Ratas , Receptores de Inositol 1,4,5-Trifosfato/efectos de los fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo
12.
ACS Nano ; 18(14): 9798-9822, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38551449

RESUMEN

Extreme climates have become frequent nowadays, causing increased heat stress in human daily life. Personal thermal management (PTM), a technology that controls the human body's microenvironment, has become a promising strategy to address heat stress. While effective in ordinary environments, traditional high-performance fibers, such as ultrafine, porous, highly thermally conductive, and phase change materials, fall short when dealing with harsh conditions or large temperature fluctuations. Aerogels, a third-generation superinsulation material, have garnered extensive attention among researchers for their thermal management applications in building energy conservation, transportation, and aerospace, attributed to their extremely low densities and thermal conductivity. While aerogels have historically faced challenges related to weak mechanical strength and limited secondary processing capacity, recent advancements have witnessed notable progress in the development of wearable aerogels for PTM. This progress underscores their potential applications within extremely harsh environments, serving as self-powered smart devices and sensors. This Review offers a timely overview of wearable aerogels and their PTM applications with a particular focus on their wearability and suitability. Finally, the discussion classifies five types of PTM applications based on aerogel function: thermal insulation, heating, cooling, adaptive regulation (involving thermal insulation, heating, and cooling), and utilization of aerogels as wearable smart devices.

13.
Environ Res ; 252(Pt 2): 118653, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38518907

RESUMEN

BACKGROUND: In China, the effects of heavy metals and metalloids (HMMs) on liver health are not consistently documented, despite their prevalent environmental presence. OBJECTIVE: Our research assessed the association between HMMs and liver function biomarkers in a comprehensive sample of Chinese adults. METHODS: We analyzed data from 9445 participants in the China National Human Biomonitoring survey. Blood and urine were evaluated for HMM concentrations, and liver health was gauged using serum albumin (ALB), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) metrics. Various statistical methods were employed to understand the relationship between 11 HMMs and liver function, adjusting for multiple factors. We also explored interactions with alcohol intake, gender, and age. RESULTS: Among HMMs, selenium in blood [weighted geometric mean (GM) = 95.56 µg/L] and molybdenum in urine (GM = 46.44 µg/L) showed the highest concentrations, while lead in blood (GM = 21.92 µg/L) and arsenic in urine (GM = 19.80 µg/L) had the highest levels among risk HMMs. Manganese and thallium consistently indicated potential risk factor to liver in both sample types, while selenium displayed potential liver protection. Blood HMM mixtures were negatively associated with ALB (ß = -0.614, 95% CI: -0.809, -0.418) and positively with AST (ß = 0.701, 95% CI: 0.290, 1.111). No significant associations were found in urine HMM mixtures. Manganese, tin, nickel, and selenium were notable in blood mixture associations, with selenium and cobalt being significant in urine. The relationship of certain HMMs varied based on alcohol consumption. CONCLUSION: This research highlights the complex relationship between HMM exposure and liver health in Chinese adults, particularly emphasizing metals like manganese, thallium, and selenium. The results suggest a need for public health attention to low dose HMM exposure and underscore the potential benefits of selenium for liver health. Further studies are essential to establish causality.

14.
Hypertens Res ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459173

RESUMEN

Frailty is the most important risk factor causing disability in the elderly. Hypertension is one of the most common chronic diseases in the elderly and is closely related to frailty, but there is still controversy about the association between blood pressure and frailty. To explore the association between baseline blood pressure level and the incident and development of long-term frailty in the community-dwelling very elderly (i.e., over 80 years old [1]) with hypertension, in order to provide a basis for scientific blood pressure management of very elderly hypertension. In this study, very elderly hypertensive patients who received comprehensive geriatric assessment from January to June 2019 and with complete data were included, and follow-up was conducted from January 1 to February 14, 2023. A total of 330 very elderly individuals with hypertension were enrolled in this study. FRAIL scale was used to evaluate frailty. Binomial logistic regression analysis was used to calculate the OR and 95%CI between baseline systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP) levels and long-term incident and development of frailty. The dose-response relationship between baseline office SBP, DBP or PP levels and incident frailty and its development was analyzed by Generalized Additive Model (GAM) using smooth curve fitting and threshold effect analysis. Smooth curve fitting and threshold effect analysis showed that the relationship between baseline office SBP level and incident frailty was U-shaped, with the nadir of the U-shaped curve at 135 mmHg after adjustment. Baseline office SBP, PP level and development frailty was U-shaped and the nadir was 140 mmHg and 77 mmHg. In the community-dwelling very elderly with hypertension, baseline office SBP level had a relationship with long-term incident frailty and its development and PP level had a relationship with long-term development of frailty.

15.
Chemosphere ; 353: 141650, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462183

RESUMEN

Recently, gravity-driven membrane (GDM) filtration has been adopted as an alternative solution for decentralized wastewater treatment due to easy installation and maintenance, reduced energy and operation cost, and low global warming impact. This study investigated the influence of microplastic size (0.5-0.8 µm and 40-48 µm) and amount (0.1 and 0.2 g/L) on the membrane performance and microbial community in GDM systems for primary municipal wastewater treatment. The results showed that dosing microplastics in the GDM systems led to 9-54% lower permeate flux than that in the control. This was attributed to more cake formation (up to 6.4-fold) with more deposition of extracellular polymeric substances (EPS, up to 1.5-fold) and divalent cations (up to 2.1-fold) in the presence of microplastics, especially with increasing microplastic amount or size. However, the dosed microplastics promoted formation of heterogeneous cake layers with more porous nature, possibly because microplastics created void space in the cake and also tended to bind with divalent cations to reduce EPS-divalent cations interactions. In the biofilm of the GDM systems, the presence of microplastics could lower the number of total species, but it greatly enhanced the abundance of certain dominant prokaryotes (Phenylobacterium haematophilum, Planctomycetota bacterium, and Flavobacteriales bacterium), eukaryotes (Stylonychia lemnae, Halteria grandinella, and Paramicrosporidium saccamoebae), and virus (phylum Nucleocytoviricota), as well as amino acid and lipid metabolic functions. Especially, the small-size microplastics at a higher dosed amount led to more variations of microbial community structure and microbial metabolic functions.


Asunto(s)
Incrustaciones Biológicas , Microbiota , Purificación del Agua , Aguas Residuales , Microplásticos , Plásticos , Cationes Bivalentes , Membranas Artificiales , Filtración/métodos , Purificación del Agua/métodos
16.
Front Public Health ; 12: 1368744, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435292

RESUMEN

Background: In May-June 2023, an unprecedented outbreak of human respiratory syncytial virus (HRSV) infections occurred in a kindergarten, Zhejiang Province, China. National, provincial, and local public health officials investigated the cause of the outbreak and instituted actions to control its spread. Methods: We interviewed patients with the respiratory symptoms by questionnaire. Respiratory samples were screened for six respiratory pathogens by real-time quantitative polymerase chain reaction (RT-PCR). The confirmed cases were further sequenced of G gene to confirm the HRSV genotype. A phylogenetic tree was reconstructed by maximum likelihood method. Results: Of the 103 children in the kindergarten, 45 were classified as suspected cases, and 25 cases were confirmed by RT-PCR. All confirmed cases were identified from half of classes. 36% (9/25) were admitted to hospital, none died. The attack rate was 53.19%. The median ages of suspected and confirmed cases were 32.7 months and 35.8 months, respectively. Nine of 27 confirmed cases lived in one community. Only two-family clusters among 88 household contacts were HRSV positive. A total of 18 of the G gene were obtained from the confirmed cases. Phylogenetic analyses revealed that 16 of the sequences belonged to the HRSV B/BA9 genotype, and the other 2 sequences belonged to the HRSV A/ON1 genotype. The school were closed on June 9 and the outbreak ended on June 15. Conclusion: These findings suggest the need for an increased awareness of HRSV coinfections outbreak in the kindergarten, when HRSV resurges in the community after COVID-19 pandemic.


Asunto(s)
Virus Sincitial Respiratorio Humano , Niño , Humanos , Preescolar , Virus Sincitial Respiratorio Humano/genética , Pandemias , Filogenia , Instituciones Académicas , Brotes de Enfermedades , China/epidemiología
17.
Small ; : e2400926, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470206

RESUMEN

As corrosion products of Zn anodes in ZnSO4 electrolytes, Zn4 SO4 (OH)6 ·xH2 O with loose structure cannot suppress persistent side reactions but can increase the electrode polarization and induce dendrite growth, hindering the practical applications of Zn metal batteries. In this work, a functional layer is built on the Zn anode by a gelatin-assistant corrosion and low-temperature pyrolysis method. With the assistant of gelatin, undesired corrosion products are converted into a uniform nanoflake array comprising ZnO coated by gelatin-derived carbon on Zn foil (denoted Zn@ZnO@GC). It is revealed that the gelatin-derived carbons not only enhance the electron conductivity, facilitate Zn2+ desolvation, and boost transport/deposition kinetics, but also inhibit the occurrence of hydrogen evolution and corrosion reactions on the zincophilic Zn@ZnO@GC anode. Moreover, the 3D nanoflake array effectively homogenizes the current density and Zn2+ concentration, thus inhibiting the formation of dendrites. The symmetric cells using the Zn@ZnO@GC anodes exhibit superior cycling performance (over 7000 h at 1 mA cm-2 /1 mAh cm-2 ) and without short-circuiting even up to 25 mAh cm-2 . The Zn@ZnO@GC||NaV3 O8 full cell works stably for 5000 cycles even with a limited N/P ratio of ≈5.5, showing good application prospects.

19.
J Nat Med ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427210

RESUMEN

This study investigates the cardioprotective effects of Paeoniflorin (PF) on left ventricular remodeling following acute myocardial infarction (AMI) under conditions of hypobaric hypoxia. Left ventricular remodeling post-AMI plays a pivotal role in exacerbating heart failure, especially at high altitudes. Using a rat model of AMI, the study aimed to evaluate the cardioprotective potential of PF under hypobaric hypoxia. Ninety male rats were divided into four groups: sham-operated controls under normoxia/hypobaria, an AMI model group, and a PF treatment group. PF was administered for 4 weeks after AMI induction. Left ventricular function was assessed using cardiac magnetic resonance imaging. Biochemical assays of cuproptosis, oxidative stress, apoptosis, inflammation, and fibrosis were performed. Results demonstrated PF significantly improved left ventricular function and remodeling after AMI under hypobaric hypoxia. Mechanistically, PF decreased FDX1/DLAT expression and serum copper while increasing pyruvate. It also attenuated apoptosis, inflammation, and fibrosis by modulating Bcl-2, Bax, NLRP3, and oxidative stress markers. Thus, PF exhibits therapeutic potential for left ventricular remodeling post-AMI at high altitude by inhibiting cuproptosis, inflammation, apoptosis and fibrosis. Further studies are warranted to optimize dosage and duration and elucidate PF's mechanisms of action.

20.
Sci Bull (Beijing) ; 69(7): 893-900, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341349

RESUMEN

Topological materials and metamaterials opened new paradigms to create and manipulate phases of matter with unconventional properties. Topological D-class phases (TDPs) are archetypes of the ten-fold classification of topological phases with particle-hole symmetry. In two dimensions, TDPs support propagating topological edge modes that simulate the elusive Majorana elementary particles. Furthermore, a piercing of π-flux Dirac-solenoids in TDPs stabilizes localized Majorana excitations that can be braided for the purpose of topological quantum computation. Such two-dimensional (2D) TDPs have been a focus in the research frontier, but their experimental realizations are still under debate. Here, with a novel design scheme, we realize 2D TDPs in an acoustic crystal by synthesizing both the particle-hole and fermion-like time reversal symmetries for a wide range of frequencies. The design scheme leverages an enriched unit cell structure with real-valued couplings that emulate the targeted Hamiltonian of TDPs with complex hoppings: A technique that could unlock the realization of all topological classes with passive metamaterials. In our experiments, we realize a pair of TDPs with opposite Chern numbers in two independent sectors that are connected by an intrinsic fermion-like time-reversal symmetry built in the system. We measure the acoustic Majorana-like helical edge modes and visualize their robust topological transport, thus revealing the unprecedented D and DIII class topologies with direct evidence. Our study opens up a new pathway for the experimental realization of two fundamental classes of topological phases and may offer new insights in fundamental physics, materials science, and phononic information processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA